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It has been proven by the authors that both the upper and lower bounds in energy
norm of the exact solution to elasticity problems can now be obtained by using the
fully compatible finite element method (FEM) and linearly conforming point interpola-
tion method (LC-PIM). This paper examines the upper bound property of the linearly
conforming radial point interpolation method (LC-RPIM), where the Radial Basis Func-
tions (RBFs) are used to construct shape functions and node-based smoothed strains
are used to formulate the discrete system equations. It is found that the LC-RPIM also
provides the upper bound of the exact solution in energy norm to elasticity problems,
and it is much sharper than that of LC-PIM due to the decrease of stiffening effect. An
effective procedure is also proposed to determine both upper and lower bounds for the
exact solution without knowing it in advance: using the LC-RPIM to compute the upper
bound, using the standard fully compatible FEM to compute the lower bound based on
the same mesh for the problem domain. Numerical examples of 1D, 2D and 3D problems
are presented to demonstrate these important properties of LC-RPIM.

Keywords: Meshfree methods; point interpolation method; radial basis functions; strain
smoothing; error bound; elasticity.

1. Introduction

The finite element method (FEM) has been well developed and is now widely and
routinely used to provide a numerical solution to engineering problems. However, to
certify the solution or to provide an error bounds to the numerical solution of FEM
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is far from routine. It is well known that the displacement-based fully compatible
FEM model provides lower bound solution in energy norm to elasticity problems. It
is, however, much more difficult to find an effective method to bound the exact solu-
tion from above for general problems in elasticity. Recently, the linearly conforming
point interpolation method (LC-PIM) [Liu et al. (2005a)] has been developed using
meshfree technique [Liu (2002)] combined with the FEM, and it has been found and
proven that the LC-PIM can provide upper bound solution in energy norm for elas-
ticity problems [Liu and Zhang (2007)]. In the LC-PIM, background cells of triangle
elements are employed and simple linear interpolation is used to interpolate the dis-
placement field, which is very similar but simpler than the practice in the FEM.
Instead of using the compatible strain that is obtained from the strain–displacement
relation, LC-PIM uses “smoothed” strain over smoothing cells of the nodes in the
problem domain. The discretized system equations of LC-PIM are then constructed
based on the “generalized” Galerkin weak form, which is derived from the Hellinger–
Reissner’s two-field variational principle. Solution of the LC-PIM model satisfies
the equilibrium equations (free of body force) at any point in the entire problem
domain, except on the interfaces of the smoothing cells. The displacement field in
the LC-PIM is compatible in the global problem domain. However, the strains in the
smoothing cells are not compatible in terms of satisfying the displacement–strain
relations. Therefore, the LC-PIM is a “quasi”-equilibrium model that combines
equilibrium model and compatible model [Liu and Zhang (2007)]. In a summary,
the LC-PIM so constructed possesses some intrinsic properties (for problems with
homogeneous essential boundary conditions):

• The LC-PIM is variationally consistent, and the generalized Galerkin weak form
is a valid form for generating the discretized system equations.

• When the same mesh is used, the strain energy obtained from the LC-PIM solu-
tion is no-less than that from the FEM solution based on compatible displacement
model.

• The LC-PIM solution (in energy norm) is no-less than that of exact solution
except a few trivial cases.

Detailed proof on these important properties can be found in the recent paper
by Liu and Zhang [2007].

The linearly conforming radial point interpolation method (LC-RPIM) was
developed from the meshfree radial point interpolation method (RPIM) which was
originally formulated based on the Galerkin weak form with shape functions con-
structed using radial point interpolation and a small set of nodes located in a local
support domain [Wang and Liu (2000, 2002a)]. The unique feature of RPIM is that
the shape functions possess the Delta function property, which allows straight-
forward imposition of point essential boundary conditions. Using the stabilized
nodal integration scheme with strain smoothing operation proposed by Chen et al.
[2001], Liu and his co-workers have developed the linearly conforming radial point
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interpolation method (LC-RPIM) [Liu et al. (2006)]. In the LC-RPIM, radial basis
functions (RBFs) augmented with linear polynomials are used to construct shape
functions, which can ensure the reproduction of the linear field [Liu (2002); Liu
and Gu (2005)]. The stabilized nodal integration scheme with strain smoothing is
employed to perform the numerical integration. The LC-RPIM can guarantee linear
exactness and monotonic convergence of the numerical solutions. Compared with
the traditional RPIM using Gauss integration scheme, the LC-RPIM obtains higher
convergence rate in terms of stress calculation.

A thorough theoretical study and intensive numerical investigation on the
LC-PIM have found that smoothing operation in the process of the nodal inte-
gration scheme can provide sufficiently strong “softening” effects (compared to the
stiffening effects introduced by the assumption of the displacement field) to the
stiffness matrix of the discretized system equations. This finding reveals the fact
that a numerical method with strain smoothing operation can provide upper bound
solution in energy norm to elasticity problems [Liu and Zhang (2007)]. This finding
has also naturally motivated us to further examine the solution bound property
of the LC-RPIM, as the strain smoothing operation is also used in the LC-RPIM.
This study has found and confirmed by a large number of examples the important
fact that the LC-RPIM also possesses the upper bound property, and the bound
is significantly sharper than that of LC-PIM. In this paper, we will first briefly
introduce the formulae of the LC-RPIM, and then some important properties of
the LC-RPIM are presented and examined. Finally, an intensive study using 1D,
2D and 3D examples will be conducted to demonstrate the properties of LC-RPIM.

2. Briefing on the Linearly Conforming Radial Point Interpolation
Method (LC-RPIM)

The formulation in this paper will largely for 2D problems for the convenience and
clarity of the presentation and without loss of generality. In our numerical study,
however, examples of 1D, 2D and 3D will be presented. Details of the formulae for
LC-RPIM can be found in the previous work [Liu et al. (2006)], and here we only
give a briefing.

2.1. Construction of RPIM shape functions

To overcome the singularity problem of moment matrix which occurs in the poly-
nomial point interpolation method formulae [Liu and Gu (1999, 2001)], radial basis
functions were introduced and modified with real shape parameters to construct
PIM shape functions [Wang and Liu (2000, 2002a)]. Using radial basis functions
augmented with polynomials, a field variable function u(x) can be approximated as
follows:

uh(x) =
n∑

i=1

Ri(x)ai +
m∑

j=1

Pj(x)bj = RT (x)a + PT (x)b, (1)
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where Ri(x) and Pj(x) are radial basis functions and polynomial basis functions
respectively, ai and bj are corresponding constants, n is the number of field nodes in
the local support domain and m is the number of polynomial terms. When m = 0,
pure RBFs are used. Otherwise, the RBF is augmented with m terms of polynomial
basis functions. In the present work, the multi-quadrics RBF (MQ-RBF) [Hardy
(1990)] is used.

Ri(x) = (r2
i + (αcdc)2)q, (2)

where dc is the average nodal spacing near the point of interest x; αc and q are
two arbitrary real numbers of dimensionless parameters as suggested by Liu [2002],
and ri is the distance from the node (xi, yi) to the point of interest (x, y) which is
defined as

ri =
√

(x − xi)2 + (y − yi)2. (3)

In Eq. (1), n nodes are used to construct the approximation, which are located
in the local support domain of the point of interest. In the present work, a circular-
shaped domain is used and the fields nodes locate inside will be chosen for the
approximation. The dimension of the local support domain ds, also the radius of
the circular, is defined as

ds = αsdc, (4)

where αs is a positive real number of dimensionless size of the local support domain.
In the present study, the following values of the parameters are used, i.e. q = 1.03,
αc = 4.0 and αs = 3.0. These values have been found to perform well for most solid
mechanics problems [Wang and Liu (2002b); Liu et al. (2005b)].

The constants in Eq. (1) can be determined by enforcing the field function
to be satisfied at the n nodes within the local support domain of the point of
interest x. This leads to n linear equations, which can be expressed in the matrix
form as

Us = Rqa + Pmb, (5)

where Us is the vector of function values,

Us = {u1 u2 · · · un}T , (6)

Rq is the moment matrix of RBFs,

Rq =




R1(r1) R2(r1) · · · Rn(r1)

R1(r2) R2(r2) · · · Rn(r2)

· · · · · · · · · · · ·
R1(rn) R2(rn) · · · Rn(rn)




(n×n)

, (7)
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Pm is the polynomial moment matrix,

Pm =




1 x1 y1 · · · pm(x1)

1 x2 y2 · · · pm(x2)

· · · · · · · · · · · · · · ·
1 xn yn · · · pm(xn)




(n×m)

, (8)

a and b are vectors of coefficients for RBFs and polynomial basis functions
respectively.

aT = {a1 a2 · · · an},
bT = {b1 b2 · · · bn}. (9)

As there are n + m variables in Eq. (5), the additional m equations should be
added by using the following constraint conditions [Golberg et al. (1999)].

n∑
i=1

pj(xi)ai = PT
ma = 0, j = 1, 2, . . . , m. (10)

Combining Eqs. (5) and (10) yields the following set of equations in the matrix
form

Ũs =

[
Us

0

]
=

[
Rq Pm

PT
m 0

]{
a

b

}
= Ga0. (11)

Solving Eq. (11), we have {
a

b

}
= G−1Ũs. (12)

Equation (1) can be rewritten as

uh(x) = RT(x)a + PT(x)b = {RT(x) PT(x)}
{

a

b

}
. (13)

Substituting Eq. (12) into Eq. (13) yields

uh(x) = {RT(x) PT(x)}G−1Ũs = Φ̃
T
(x)Ũs, (14)

where the RPIM shape functions can be expressed as

Φ̃T(x) = {RT(x) PT(x)}G−1

= {ϕ1(x) ϕ2(x) · · · ϕn(x) ϕn+1(x) · · · ϕn+m(x)}. (15)

Finally, the RPIM shape functions corresponding to the nodal values are
obtained as

ΦT(x) = {ϕ1(x) ϕ2(x) · · · ϕn(x)}. (16)
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Then Eq. (14) can be rewritten as

uh(x) = ΦT(x)Us. (17)

The derivatives of u(x) are easily obtained as

uh
′l(x) = ΦT

′l(x)Us, (18)

where l denotes the coordinate x or y, and the comma denotes a partial differenti-
ation with respect to the indicated spatial coordinate that follows.

2.2. Discretized system equations

It has been proved that the generalized Galerkin weak form, which is derived from
the Hellinger–Reissner’s two-field variational principle, is a valid weak form for LC-
PIM [Liu and Zhang (2007)]. In the LC-RPIM, we first assume that the displacement
is approximated using Eq. (17), and then assume the strain using the assumed
displacement field as �

ε(u). In the same way, any assumed displacement u and the
corresponding assumed strain �

ε(u) satisfies the generalized Galerkin weak form as
follows: ∫

Ω

δ(�
ε(u))T D(�

ε(u))dΩ −
∫

Ω

δuTbdΩ −
∫

Γt

δuT t̂dΓ = 0 (19)

Substituting Eq. (17) into Eq. (19), a set of discretized system equations can be
obtained in the following matrix form:

�

K
�

d =
�

f . (20)

In the process of obtaining Eq. (20), the nodal integration scheme with strain
smoothing operation is used to perform the numerical integration over the problem
domain Ω.

2.3. Nodal integration with strain smoothing

A node-based integration is used in the present method and the problem domain Ω
is divided into smoothing domains Ω = Ω1 ∪Ω2 ∪· · · ∪ΩN and Ωi ∩ Ωj = ∅, i �= j,
in which N is the number of total field nodes. Background cells of triangles are used
and the smoothing domain Ωk for node k is formed by connecting sequentially the
mid-edge-point to the centroids of the surrounding triangles of the node (shown in
Fig. 1).

Introducing the nodal integration scheme, the entries of the stiffness matrix
�

K
can be represented as

�

Kij =
N∑

k=1

�

Kij(k), (21)
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Field node 

Centroid of triangle 

Mid-edge-point 

k 
kΩ

kΓ

Fig. 1. Illustration of background triangular cells and the smoothing domain for each node (The
smoothing domain is created by sequentially connecting the controids with the mid-edge-points of
the surrounding triangles of this node).

where
�

Kij(k) is the stiffness matrix of node k which is calculated as

�

Kij(k) =
∫

Ωk

�

B
T

i D
�

BjdΩ =
�

B
T

i D
�

BjAk, (22)

where
�

B is the smoothed strain matrix, D is the matrix of material constants and
Ak is the area of the smoothing domain of node k.

The entries of the force vector
�

f in Eq. (20) can be expressed as
�

f i =
∑

k∈Ninfl

�

f i(k), (23)

where Ninfl is the number of nodes in the influence domain of node k (including
node k) or those nodes whose shape function support cover node k,

�

f i(k) can be
further expressed as

�

f i(k) =
∫

Γt(k)

Φit̂dΓ +
∫

Ω(k)

ΦibdΩ. (24)

A node-based strain smoothing operation is now applied at each node to obtain

�
εk ≡ �

ε(xk) =
∫

Ωk

ε(x)
�

W(x − xk)dΩ, (25)

where �
εk is the smoothed strain for node k,

�

W = � �

W
�

W
�

W � is a diagonal

matrix of smoothing function
�

W . For simplicity, the smoothing function is taken as

�

W (x − xk) =

{
1/Ak, x ∈ Ωk

0, x /∈ Ωk,
(26)

where Ak is the area of smoothing domain for node k.
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Substituting Eq. (26) into Eq. (25) and integrating by parts, we arrive at

�
εk =

1
Ak

∫
Ωk

ε(x)dΩ =
1

Ak

∫
Γk

Lnu(x)dΓ = �
εk(u), (27)

where Γk is the boundary of the smoothing domain for node k, Ln is the matrix of
the outward normal vector on Γk, expressed as follows:

Ln =



nx 0

0 ny

ny nx


 . (28)

Substituting Eq. (17) into Eq. (27), the smoothed strain can be expressed in the
matrix form as follows:

�
εk =

∑
i∈Ninfl

�

Bi(xk)Ui, (29)

where
�

Bi(xk) is the smoothed strain matrix which is expressed as

�

Bi(xk) =




�

b ix(xk) 0

0
�

b iy(xk)
�

b iy(xk)
�

b ix(xk)


 , (30)

where the elements of the smoothed strain matrix are calculated by using Gauss
integration along each segment of boundary Γk.

�

b il =
1

Ak

Ns∑
m=1


 Ng∑

n=1

wnϕi(xmn)nl(xm)


 (l = x, y), (31)

where Ns is the number of segments of the boundary Γk, Ng is the number of
Gauss points used in each segment, wn is the corresponding weight number of
Gauss integration scheme, and nl is the unit outward normal corresponding to each
segment on the smoothing domain boundary.

3. Properties of LC-RPIM

Some important properties of LC-RPIM have been found and proved in the present
work.

Property 1: Variationally consistent

Proof. The LC-RPIM is variationally consistent, in which the smoothed strain is
used instead of the compatible strain. To examine the variational consistency, we
start with the Hellinger–Reissner’s two-field variational principle [Wu (1982)]:

J(u, ε) = −
∫

Ω

1
2
εTDεdΩ −

∫
Ω

(LT
d σ + b)TudΩ +

∫
Γu

tT ûdΓ −
∫

Γt

(̂t − t)TudΓ,

(32)
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where ε is the assumed strain vector that is independent of u, the stresses σ is
dependent on the strains through the stress-strain relation σ = Dε, t is the traction
on the boundary that is depending on the stresses σ in the form of LT

nσ = t, û and
t̂ are prescribed displacement and traction along the boundaries and Ld is a matrix
of differential operator defined as

Ld =




∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x


 . (33)

Using the Green’s divergence theorem and invoking Eq. (27), we have the fol-
lowing function of single displacement variable in the form of

J(u) = −
∫

Ω

1
2
(�
ε(u))T D(�

ε(u))dΩ −
∫

Ω

bTudΩ

−
∫

Γt

t̂TudΓ +
∫

Ω

�
ε(u)T Dε(u)dΩ. (34)

Now we examine the last term in the above equation.∫
Ω

�
εTDεdΩ =

∫
Ω

�
εTD(Ldu)dΩ =

N∑
k=1

∫
Ωk

�
εT

kD(Ldu)dΩ (35)

Note that due to the smoothing operation, the assumed strains �
εk are constants

in Ωk. Using Green’s divergence theorem for each smoothing domain Ωk, we obtain

∫
Ω

�
εTDεdΩ =

N∑
k=1


∫

Γk

(�
εT

kD)(Lnu)dΓ −
∫

Ωk

(LT
d (�

εT
kD))T︸ ︷︷ ︸

=0, inΩk

udΩ




=
N∑

k=1

∫
Γk

�
εT

kD(Lnu)dΓ. (36)

Again since �
εk is constant in Ωk and invoking Eq. (27), we arrive at∫

Ω

�
εTDεdΩ =

N∑
k=1

(�
εT

kD)
∫

Γk

(Lnu)dΓ =
N∑

k=1

�
εT

kD
�
εkAk =

∫
Ω

�
εTD�

εdΩ. (37)

Equation (37) means that LC-RPIM satisfies the orthogonal condition:∫
Ω

�
εTDεdΩ =

∫
Ω

�
εTD�

εdΩ, (38)

which implies that LC-RPIM is variationally consistent.

Substituting the above equation into Eq. (34), then the generalized Galerkin
weak form can be obtained as expressed in Eq. (19).
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Property 2: Upper bound property

We now state that the LC-RPIM solution (in energy norm) is always no-less than
that of displacement-based fully compatible finite element method (FEM), and is
no-less than that of exact solution for problems with homogeneous essential bound-
ary conditions except the following trivial cases where there is no sufficient smooth-
ing operations.

One of such a trivial case is that when only one element is used. In this case,
only one element participates in smoothing, which does not have any smoothing
effects, and hence the LC-RPIM obtains same solution as the FEM.

The proof and detailed examination of above statement can be very similar to
that for the LC-PIM. We, therefore, omit it here and refer the reader to the recent
paper by Liu and Zhang [2007].

Property 3: Tightness of the bound

The upper bound provided by the LC-RPIM solution is much tighter than that of
the LC-PIM using linear shape functions.

This property can be understood intuitively by the following arguments: the
smoothing operation provides a “softening” effect to the solids or structures and
the use of any compatible shape functions provide a “stiffening” effect to the model.
Compared with the linear shape functions used in the LC-PIM, the RPIM shape
functions used in the LC-RPIM are of higher order which reduces the “stiffening”
effects to the model. Therefore, the upper bound provided by the LC-RPIM model
is tighter than that of the LC-PIM using linear shape functions. Detailed discussion
on the softening and stiffening effects to a numerical model using strain smoothing
operation can be found in the previous work [Liu and Zhang (2007)].

4. Numerical Examples

A number of 1D, 2D and 3D numerical examples are studied in this section. Mate-
rials of the problems are linear elastic and units used are based on international
standard unit system unless specially mentioned.

4.1. 1D bar problem

A 1D bar problem with length L and uniform cross-sectional area A is considered.
As shown in Fig. 2, the bar is fixed at the left end and subjected to a uniform body

x 

Fig. 2. One-dimensional bar subjected to a uniformly distributed body force.
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force b. Values of the parameters as taken as L = 1, A = 1, b = 1 and E = 1.
Governing equation and boundary conditions are expressed as

E
d2u

dx2
+ 1 = 0,

u(x = 0) = 0, (39)

σ(x = 1) = 0.

The exact solution can be calculated as follows

u0(x) = − 1
2E

x2 +
1
E

x. (40)

We study this problem using FEM, LC-PIM and present LC-RPIM with 10
models of uniformly distributed nodes. The computed values of strain energy are
plotted in Fig. 3 against the increase of degree of freedoms, together with the
reference solution of strain energy which is calculated using the exact solution in
Eq. (40). The figure shows that LC-PIM provides an upper bound solution on
strain energy when the number of nodes is bigger than 2, while the FEM gives a
lower bound. This result is consistent with previous work [Liu and Zhang (2007)].
Furthermore, the LC-RPIM is found to possess an upper bound property similar as
LC-PIM, i.e. the strain energy of LC-RPIM solution is always bigger than the exact
one and approaches to it from above monotonically. Compared with the LC-PIM,
it has also been found that the present LC-RPIM is much tighter than the LC-PIM
for the same problem by using same nodes distributions. This simple 1D problem
has confirmed the properties of the LC-RPIM.

0 2 4 6 8 10 12
0.12
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DOF
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LC-PIM solu.
LC-RPIM solu.

Fig. 3. Upper bound solution obtained using the LC-RPIM and LC-PIM for the 1D bar problem.
The lower bound solution is obtained using the FEM with linear elements.
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4.2. 2D cantilever beam

A two-dimensional problem of a cantilever beam is now studied, which is of length
L, height D and unit thickness. The beam is fixed at the left end and subjected
to a parabolic traction at the right end as shown in Fig. 4. The analytical solution
based on the plane stress theory is available as follows [Timoshenko and Goodier
(1970)].

ux = − py

6EI

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]
, (41)

uy =
p

6EI

[
3νy2(L − x) + (4 + 5ν)

D2x

4
+ (3L − x)x2

]
, (42)

σxx = −p(L − x)y
I

, (43)

σyy = 0, (44)

σxy =
p

2I

[
D2

4
− y2

]
, (45)

where I is the moment of the inertia given as I = D3/12. The parameters used in
this problem are taken as E = 3.0 × 107, v = 0.3, L = 50, D = 10 and P = −1000.

First we study the convergence property of the LC-RPIM and compared with
the FEM and LC-PIM. Four models with regularly distributed nodes (105, 369, 793
and 1377 nodes) are used for all these methods. Errors in displacement and energy
norms are calculated according to the following equations.

ed =

√√√√√√√√√
n∑

i=1

(uexact
i − unumerical

i )2

n∑
i=1

(uexact
i )2

(46)

ee =
1
A

√
1
2

∫
Ω

(εexact − εnumerical)T D(εexact − εnumerical) dΩ (47)

L 

x

y 

D 

P 

Fig. 4. A two-dimensional cantilever solid subjected to a parabolic traction on the right edge.
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(a) Convergence rate in displacement norm (b) Convergence rate in energy norm

Fig. 5. Comparison of convergence rate between the linear FEM, the LC-PIM and the LC-RPIM
via the 2D cantilever beam.

Figure 5 shows the convergence situation in terms of displacement error and
energy error. It can be observed that the LC-RPIM and LC-PIM obtain similar
convergence rate and accuracy in displacement compared with the linear FEM. For
the results in energy norm, similar as LC-PIM, LC-RPIM is more accurate and
achieves much higher convergence rate than the linear FEM.

Based on the discussion in the previous work [Liu and Zhang (2007)], the
LC-RPIM behaves as a combination of equilibrium model and compatible model.
The displacement fields in the LC-RPIM are compatible in the global problem
domain, but the strains in the smoothing domains are obtained using Eq. (29) and
hence will not be compatible in terms of satisfying the displacement-strain rela-
tions. On the other hand, the LC-RPIM satisfies the equilibrium equations (free of
body force) at any point within the smoothing domain but only the displacement
compatibility is ensured on the interfaces of the smoothing domains. It is known
that the convergence rate in energy norm of a fully compatible model for linear field
assumed is, in theory, 1.0; and for a fully equilibrium model, the convergence rate
in energy norm should be, in theory, 2.0. Therefore, the convergence rate in energy
norm for the present LC-RPIM should be, in theory, between 1.0 and 2.0, which is
similar as the performance of LC-PIM. Figure 5 shows that the convergence rates
in energy norm for the LC-PIM and LC-RPIM are 1.42 and 1.41 respectively, which
has confirmed the theory.

Figure 6 shows the convergence status of the strain energies against the increase
of Degree of Freedom (DOF) for all the three methods used in this problem,
i.e. FEM, LC-PIM and LC-RPIM. The reference value of strain energy is calcu-
lated using the analytical solutions of stress components. It can be observed again
that both the LC-RPIM and LC-PIM provide upper bound solutions in energy
norm while the FEM gives a lower bound solution. Compared with the LC-PIM,
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Fig. 6. Upper bound solution obtained using the LC-RPIM and LC-PIM for the 2D cantilever
beam. The lower bound solution is obtained using the FEM with linear elements.

the LC-RPIM is tighter to the reference solution. This benchmark 2D problem has
again confirmed the properties of the LC-RPIM which have been discussed in the
previous section.

4.3. 2D infinite plate with a circular hole

An infinite two-dimensional plate with a central circular hole and subjected to a
unidirectional tensile is studied. Due to the two-fold symmetry, one quarter of the
plate is modeled with the dimensions of b in both x- and y-directions (as shown in
Fig. 7). Symmetry conditions are imposed on the left and the bottom edges. The
analytical solution of stress components is available as follows [Timoshenko and

b 

b

x Tx 

r 

θ
a 

Fig. 7. Infinite two-dimensional solid with a circular hole subjected to a tensile force and its quarter
model.
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Goodier (1970)].

σxx = Tx

{
1 − a2

r2

[
3
2

cos(2θ) + cos(4θ)
]

+
3a4

2r4
cos(4θ)

}
, (48)

σyy = −Tx

{
a2

r2

[
1
2

cos(2θ) − cos(4θ)
]

+
3a4

2r4
cos(4θ)

}
, (49)

σxy = −Tx

{
a2

r2

[
1
2

sin(2θ) + sin(4θ)
]
− 3a4

2r4
sin(4θ)

}
, (50)

where (r, θ) are the polar coordinates and θ is measured counterclockwise from
the positive x-axis. Traction boundary conditions are imposed on the right and
the upper edges based on the analytical solutions in the above equations. The
displacement components corresponding to the stress are expressed as

ur =
Tx

4µ

{
r

[
(κ − 1)

2
+ cos(2θ)

]
+

a2

r
[1 + (1 + κ) cos(2θ)] − a4

r3
cos(2θ)

}
, (51)

uθ =
Tx

4µ

[
(1 − κ)

a2

r
− r − a4

r3

]
sin(2θ), (52)

where

µ =
E

2(1 + v)
, κ =




3 − 4v, Plane strain

3 − v

1 + v
, Plane stress.

(53)

The parameters in this problem are taken as E = 3.0 × 107, v = 0.3, a = 1,
b = 5 and Tx = 10.

We study this problem using FEM, LC-PIM and LC-RPIM with four models
of irregular nodes distributions (577, 1330, 2850 and 3578 nodes). The convergence
rates in both displacement norm and energy norm are showed in Fig. 8. Similar
conclusion can be drawn as previous example, the LC-RPIM obtains almost-equal
convergence rate in displacement rate compared with FEM and LC-PIM. However,
the LC-RPIM and LC-PIM achieve better accuracy and higher convergence rates
in energy norm, which are 1.22 and 1.40 respectively for this particular problem.

Figure 9 plots the values of strain energy of each model against the DOF for all
the three methods used. Again, it can be observed that the LC-RPIM, similar as
the LC-PIM, provides an upper bound solution in energy norm and the LC-RPIM
is tighter than the LC-PIM to the reference value of strain energy.

4.4. 2D square plate subjected to uniform pressure and body force

As shown in Fig. 10, a 2D square plate is studied. The plate is constrained on the
left, the right and the bottom edges, and subjected to uniform pressure (1 N/m)
and a uniformly distributed body force of bT = {0 −1}. We consider this problem
as plane stress with the following parameters: E = 3.0 × 107 and ν = 0.3.
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Fig. 8. Comparison of convergence rate between the linear FEM, the LC-PIM and the LC-RPIM
via the 2D infinite plate with hole.
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Fig. 9. Upper bound solution obtained using the LC-RPIM and LC-PIM for the 2D infinite plate
with hole; The lower bound solution is obtained using the FEM with linear elements.

The problem is discretized with four models of regular nodes distribution (41,
145, 545 and 2113 nodes). We also investigated the upper bound property of
LC-RPIM. As the analytical solution for this problem is not available, a reference
solution is obtained by using the FEM with a very fine mesh (8238 nodes). Figure 11
shows the calculated strain energies against the DOF, and it can be observed again
that the LC-RPIM gives an upper bound solution and is tighter than the LC-PIM.

4.5. 2D automotive part: Rim

A typical rim of automotive component is studied here. As shown in Fig. 12, the rim
is fixed at the nodes located along the inner circle and a pressure of 100 is applied
along the lower arc edge within the angle of 60◦.
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Fig. 10. A square plate subjected to uniform pressure and a uniformly distributed body force.
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Fig. 11. Upper bound solution obtained using the LC-RPIM and LC-PIM for the 2D square plate
problem. The lower bound solution is obtained using the FEM with linear elements.

This problem is studied by using LC-RPIM, LC-PIM and FEM with four models
of nodes distributions, i.e. 611, 935, 1192 and 2608 nodes. Against the DOF, strain
energies of the numerical solutions provided by the three methods are plotted in
Fig. 13, in which the reference strain energy is obtained by using the FEM with
very fine mesh (9835 nodes). The picture shows that the compatible FEM model
provides lower bound, LC-RPIM and LC-PIM both provide upper bound in strain
energy and the upper bound of LC-RPIM solution is much tighter than that of
LC-PIM solution.

4.6. 3D lame problem

Finally, a three-dimensional Lame problem is studied, which consists of hollow
sphere with inner radius a, outer radius b and subjected to internal pressure p,
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Fig. 12. Model of an automotive rim.
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Fig. 13. Upper bound solution obtained using the LC-RPIM and LC-PIM for the problem of 2D
rim. The lower bound solution is obtained using the FEM with linear elements.

as shown in Fig. 14. The analytical solution is available for this problem in polar
coordinate system [Timoshenko and Goodier (1970)].

ur =
Pa3r

E(b3 − a3)

[
(1 − 2ν) + (1 + ν)

b3

2r3

]
, (54)

σr =
Pa3(b3 − r3)
r3(a3 − b3)

, (55)

σθ =
Pa3(b3 + 2r3)
2r3(b3 − a3)

, (56)
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Fig. 14. The 3D Lame problem of a hollow sphere subjected to an internal pressure.
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Fig. 15. Upper bound solution obtained using the LC-RPIM and LC-PIM for the problem of 3D
Lame problem. The lower bound solution is obtained using the FEM with linear elements.

where r is the radial distance from the centroid of the sphere to the point of interest
in the sphere. As the problem is spherically symmetrical, one-eight of the sphere
is modeled and symmetry boundary conditions are applied on the three planes
of symmetry. The parameters are taken as E = 1.0, v = 0.3, a = 1, b = 2
and P = 1.

The problem is presented using four models of nodes distributions, i.e. 173, 317,
729 and 1304 nodes. Values of the calculated strain energy for FEM, LC-PIM and
LC-RPIM are plotted against the DOF in Fig. 15. For this 3D problem, LC-RPIM
is found producing an upper bound solution, and is tighter than the LC-PIM.

5. Conclusions

In this work, a study on the upper bound property of the linearly conforming radial
point interpolation method (LC-RPIM) has been conducted. In a summary, some
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conclusions are drawn as follows:

• The LC-RPIM is variationally consistent, and the generalized Galerkin weak
form, which can be derived from the Hellinger–Reissner’s two-field variational
principle, is a valid weak form for the LC-RPIM.

• Compared with the linear FEM and LC-PIM using linear interpolation, the
LC-RPIM obtains similar accuracy and convergence rate in displacement norm.

• LC-RPIM performs as a combination of compatible model and equilibrium model.
Therefore, the convergence rate in energy norm for the LC-RPIM is, in theory,
between 1.0 and 2.0, which is similar to the LC-PIM and higher than the linear
FEM.

• LC-RPIM provides an upper bound solution in energy norm to elasticity problems
except a few trivial cases.

• Compared with LC-PIM which can also provide upper bound to elasticity prob-
lems, upper bound of LC-RPIM solution is much tighter than that of LC-PIM.
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